Pierreiones A-D, Solid Tumor Selective Pyranoisoflavones and Other Cytotoxic Constituents from Antheroporum pierrei

Song Gao, ${ }^{+}$Ya-ming Xu, ${ }^{+}$Frederick A. Valeriote, ${ }^{*, \not}$ and A. A. Leslie Gunatilaka ${ }^{*,+}$
${ }^{+}$Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706-6800, United States
${ }^{\dagger}$ Division of Hematology \& Oncology, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, United States

Supporting Information

Abstract

Bioassay-guided fractionation of a solid tumor selective extract of the leaves and twigs of Antheroporum pierrei acquired from the U.S. National Cancer Institute extract repository afforded four new pyranoisoflavones, pierreiones $\mathrm{A}-\mathrm{D}(1-4)$, together with rotenone (5), 12a-hydroxyrotenone (6), and tephrosin (7). The structures of all new compounds were determined on the basis of their spectroscopic data, and the absolute configuration of 1 was assigned with the help of ${ }^{1} \mathrm{H}$ NMR analysis of its Mosher's ester derivatives. Compounds 1 and 5-7 accounted for the majority of the biological activity in terms of either cytotoxicity and/or selective toxicity to solid tumor cell lines. Pierreiones A (1) and B (2) demonstrated solid tumor selectivity with minimal cytotoxicity, while pierreione C (3) exhibited no activity.

Pierreione A: $1 \mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{a}$ Pierreione B: $2 R_{1}=H, \quad R_{2}=a$ Pierreione C: $3 \mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=b$ Pierreione D: $4 R_{1}=H, \quad R_{2}=b$ a OH b

Amajor problem with present day cancer chemotherapy is the serious deficiency of drugs to treat solid tumors and the concurrent metastatic disease. ${ }^{1}$ The majority of cell-based antitumor drug discovery efforts that have led to useful discovery of standard chemotherapeutic agents have relied frequently on their potency rather than selectivity. To address this deficiency, we have developed a high-throughput, costefficient, simple end-point disk diffusion soft agar assay based on differential clonogenic cytotoxicity between solid tumor cells and either normal or leukemia cells. ${ }^{2}$ Solid tumor selectivity criteria in this approach incorporate both the cellular and molecular targets associated with the cancer phenotype. In continuing our efforts to uncover potential anticancer agents from plants, ${ }^{3}$ we investigated an extract of Antheroporum pierrei Gagnep. (Fabaceae) acquired from the natural products repository of the U.S. National Cancer Institute (NCI), which exhibited solid tumor selectivity in our assay. The genus Antheroporum Gagnep. contains five species, namely, A. banaense, A. glaucum, A. harmandii, A. vidalli, and A. pierrei. ${ }^{4}$ None of these species have been subjected to any detailed biological and/or chemical investigations, except for a report of the occurrence of the nonprotein amino acids arginine and homoarginine in seeds of A. pierrei, ${ }^{5}$ a perennial tree native to China, Thailand, and Vietnam. Consequently, we investigated the solid tumor selective extract of A. pierrei, and herein we report the isolation and characterization of four new isoflavones, pierreiones A-D $(1-4)$, and three known compounds, rotenone (5), ${ }^{6} 12 \mathrm{a}-$ hydroxyrotenone (6), ${ }^{6,7}$ and tephrosin (7), ${ }^{8}$ and in vitro evaluation of their potential anticancer activity.

$1 \mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=a$
$2 \mathrm{R}_{1}=\mathrm{H}, \quad \mathrm{R}_{2}=a$
$3 \mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=b$
$4 \mathrm{R}_{1}=\mathrm{H} \quad, \mathrm{R}_{2}=b$
$8 \mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{c}$

$6 \mathrm{R}=\mathrm{OH}$

Bioactivity-guided fractionation of the solid tumor selective $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(1: 1)$ extract of leaves and twigs of A. pierrei afforded compounds $\mathbf{1}-7$. Pierreione A (1) was obtained as a colorless solid. Its molecular formula was established as $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{8}$ from HRESIMS and ${ }^{13} \mathrm{C}$ NMR data and indicated 13 degrees of unsaturation. The IR spectrum of 1 showed absorption bands for $\mathrm{OH}\left(3433 \mathrm{~cm}^{-1}\right)$ and conjugated CO

[^0]$\left(1639 \mathrm{~cm}^{-1}\right)$ functionalities. Its UV spectrum was typical of an isoflavone, ${ }^{9,10}$ and this was confirmed by the presence of characteristic NMR signals at $\delta_{\mathrm{H}} 7.76$ (s, H-2) and $\delta_{\mathrm{C}} 150.6$ (C-2). ${ }^{10-12}$ The ${ }^{1} \mathrm{H}$ NMR spectrum also showed four singlets due to methyl groups [$\delta 1.24(3 \mathrm{H}), 1.29(3 \mathrm{H})$, and $1.46(6 \mathrm{H})$], two OCH_{3} groups [$\delta 3.86$ and 3.87], and an aromatic proton ($\delta 6.59$). In addition, it had signals due to an AB spin system consisting of two doublets $(J=10.0 \mathrm{~Hz})$ at $\delta 6.72$ and 5.71. This, together with the presence of a signal due to two methyl groups at $\delta 1.46(6 \mathrm{H}, \mathrm{s})$, suggested that $\mathbf{1}$ contained a $2^{\prime \prime}, 2^{\prime \prime}$-dimethylpyran substituent. ${ }^{11}$ The presence of this substituent was supported further by its ${ }^{13} \mathrm{C}$ NMR signals at $\delta_{\mathrm{C}} 130.8,116.0,77.7$, and 28.3. ${ }^{1,13,14}$ Long-range correlations observed in the HMBC spectrum of 1 (see Figure S17 in the Supporting Information) allowed placement of the aromatic proton ($\delta 6.59$) at $\mathrm{C}-8$ of ring A and one of the OCH_{3} groups ($\delta 3.86$) at C -5. In the NOE experiment, irradiation of the signal due to this OCH_{3} caused enhancement of the olefinic proton at $\delta 6.72$, suggesting that the dimethylpyran moiety is fused to ring A in a linear manner. In the aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum, the presence of signals due an ABX spin system $[\delta 7.14(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{dd}$, $J=8.0$ and 2.0 Hz), and $6.93(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})]$ suggested that ring B of this isoflavone was $1^{\prime}, 3^{\prime}, 4^{\prime}$-trisubstituted. ${ }^{10}$ The signal at $\delta_{\mathrm{H}} 7.14$ was assigned to $\mathrm{H}-2^{\prime}$ due to its NOE with $\mathrm{H}-2$ (see Figure S17 in the Supporting Information). The chemical shifts of H-6 ($\delta 6.97$) and $\mathrm{H}-5^{\prime}(\delta 6.93)$ signals were in agreement with those reported for isoflavones. ${ }^{10}$ The NOE correlation observed between $\mathrm{H}-2^{\prime}(\delta 7.14)$ and the OCH_{3} at $\delta 3.87$ suggested that the latter group is attached to $\mathrm{C}-3^{\prime}$. The remaining signals in the ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of an oxygenated methylene group $[\delta 4.29(1 \mathrm{H}, \mathrm{dd}$, $J=9.5$ and 2.5 Hz$), 4.08(1 \mathrm{H}, \mathrm{dd}, J=9.5$ and 6.5 Hz$)]$, an oxygenated methine group $[\delta 3.69(1 \mathrm{H}, \mathrm{br} \mathrm{s})$], and two methyl groups [$\delta 1.29(\mathrm{~s})$ and $1.24(\mathrm{~s})]$ attached to an oxygenated carbon. These signals were assigned to a $\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{C}$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$ spin system by comparison with the data reported for similar systems. ${ }^{15,16}$ Although no correlations were observed between $\mathrm{C}-1^{\prime \prime \prime}$ protons ($\delta 4.08$ and 4.29) with the signal due to C-4 ${ }^{\prime}(\delta 147.8)$ in the HMBC spectrum, this moiety was placed at C-4' based on its NOE data (see Figure S17 in the Supporting Information). The configuration at $\mathrm{C}-2^{\prime \prime \prime}$ was determined to be R by application of the modified Mosher's ester method according to the reported procedure (see Figure S18 in the Supporting Information). ${ }^{17,18}$ The structure of pierreione A was thus established as $3^{\prime}, 5$-dimethoxy-4^{\prime}-(2R,3-dihydroxy-3-methylbutoxyl)- $3^{\prime \prime}, 3^{\prime \prime}$-dimethylpyrano-(6,7)-isoflavone (1).

The molecular formula of pierreione $\mathrm{B}(2)$ was determined as $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{7}$ from its HRESIMS. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 2 closely resembled those of $\mathbf{1}$, except that the OCH_{3} group at C-5 was absent in $\mathbf{2}$; instead it showed an additional aromatic proton ($\delta 7.85$). The optical rotation of $\mathbf{2}$ was close to that of $\mathbf{1}$, suggesting the R configuration at $\mathrm{C}-2^{\prime \prime \prime}$. Thus, the structure of pierreione B was elucidated as 3^{\prime}-methoxy- 4^{\prime}-($2 R, 3$-dihydroxy-3-methylbutoxyl)-3", $3^{\prime \prime}$-dimethylpyrano-(6,7)-isoflavone (2).

Pierreione C (3) was obtained as a white, amorphous solid that analyzed for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{6}$ by HRESIMS. Its IR spectrum showed the presence of $\mathrm{OH}\left(3433 \mathrm{~cm}^{-1}\right)$ and conjugated $\mathrm{CO}\left(1640 \mathrm{~cm}^{-1}\right)$ groups. Compound 3 was also suspected to be an isoflavone based on its UV spectrum and the ${ }^{1} \mathrm{H}$ NMR signal due to $\mathrm{H}-2$ at δ 7.76. ${ }^{9-12}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum of 3 , the OCH_{3} group at C-5 appeared at $\delta 3.87$, while the signals of the $3^{\prime \prime}, 3^{\prime \prime}$-dimethylpyran
substituent on ring A were at $\delta 6.72(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 5.70(1 \mathrm{H}$, d, $J=10.2 \mathrm{~Hz}$), and $1.45(6 \mathrm{H}, \mathrm{s})$. Signals due to an $A B X$ system at $\delta 7.11(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz})$, and $6.97(1 \mathrm{H}$, dd, $J=7.8$ and 1.8 Hz) suggested that $\mathrm{C}-3^{\prime}$ and $\mathrm{C}-4^{\prime}$ of 3 were oxygenated. ${ }^{9,14}$ The ${ }^{1} \mathrm{H}$ NMR signal at $\delta 3.88$ was assigned to an OCH_{3} group (at C-3'). On the basis of literature precedence, the signals at $\delta 4.59(2 \mathrm{H}, \mathrm{br}$ d, $J=6.6 \mathrm{~Hz}), 5.51(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.75$ $(3 \mathrm{H}, \mathrm{s})$, and $1.72(3 \mathrm{H}, \mathrm{s})$ were assigned to a $3^{\prime \prime \prime}$-methyl-2'1' -butenyl moiety linked to $\mathrm{C}-4^{\prime}$ through an oxygen atom. ${ }^{19,20}$ The foregoing suggested that the structure of pierreione C should be identical to the dimethoxy derivative of the previously known pyranoisoflavone, isoauriculasin. ${ }^{20}$ Thus, pierreione C was identified as $3^{\prime}, 5$-di-methoxy-4'-O-(3-methyl-2-butenyl)-3" ${ }^{\prime \prime}, 3^{\prime \prime}$-dimethylpyrano-(6,7)isoflavone (3).

Pierreione D (4), obtained as a white, amorphous solid, had the molecular formula $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{5}$ based on its HRESIMS data. The ${ }^{1} \mathrm{H}$ NMR spectrum of 4 showed a very close resemblance to that of 3 , except for the presence of an aromatic proton signal at $\delta 7.86$ in 4 instead of the signal due to the $\mathrm{OCH}_{3}(\delta 3.87)$ in 3. The foregoing evidence identified pierreione D as 3^{\prime}-methoxy- 4^{\prime} -O-(3-methyl-2-butenyl)-3", $3^{\prime \prime}$-dimethylpyrano-(6,7)-isoflavone (4). Comparison of the spectroscopic and optical rotation data of compounds 5-7 with those reported in the literature allowed these to be identified as rotenone, ${ }^{6} 12$ a-hydroxyrotenone, ${ }^{6,7}$ and tephrosin, ${ }^{8}$ respectively.

A disk diffusion soft agar assay, using a panel of two solid tumor cell lines [C38 (colon adenocarcinoma) and HCT-116 (colon cancer)] and one leukemia cell line [L1210 (lymphocytic leukemia)], was used to evaluate the differential cytotoxicity (solid tumor selectivity) of the extract, fractions, and pure compounds. ${ }^{2} \mathrm{IC}_{50}$ data for compounds $1-7$ in the human colon cancer cell line HCT-116 were also determined. Taken together, these data (Table 2) suggested that pierreione A (1), rotenone (5), 12a-hydroxyrotenone (6), and tephrosin (7) accounted for the majority of the biological activity in terms of either cytotoxicity and/or selective toxicity to solid tumor cell lines, and pierreiones A (1) and B (2) demonstrated solid tumor selectivity with minimal cytotoxicity, while pierreione C (3) exhibited no activity. As the only difference between the structures of pierreione A (1) and pierreione C (3) is the presence of a 2 , 3 -dihydroxyisopentane side-chain in ring C of 1 instead of an isopentenyl moiety in 3 , it is likely that the presence of the former is required for the cytotoxic activity of $\mathbf{1}$. It is noteworthy that cytotoxic activities for rotenone (5), ${ }^{21-25}$ 12a-hydroxyrotenone (6), ${ }^{23}$ and tephrosin $(7)^{23,24}$ against several cancer cell lines have been reported previously.

■ EXPERIMENTAL SECTION

General Experimental Procedures. Optical rotations were measured with a Jasco Dip-370 polarimeter using CHCl_{3} as solvent. IR spectra using KBr disks were recorded on a Shimadzu FTIR-8300 spectrometer. 1D and 2D NMR spectra were recorded in CDCl_{3} with a Bruker DRX-500 and a Bruker DRX-600 instrument at 500 or 600 MHz for ${ }^{1} \mathrm{H}$ NMR and 125 MHz for ${ }^{13} \mathrm{C}$ NMR using residual CHCl_{3} as the internal standard. Chemical shift values (δ) are given in parts per million (ppm), and the coupling constants are in Hz . Low-resolution and highresolution MS were recorded on Shimadzu LCMS-DQ8000 α and JEOL HX110A spectrometers, respectively. HPLC was carried out on a Hitachi instrument consisting of a DAD and an ELSD detector. The semipreparative C-8 column ($250 \times 10 \mathrm{~mm}, 5 \mu \mathrm{~m}$) used was from Phenomenex Inc.

Table 1. ${ }^{1} \mathrm{H}$ NMR Data (500 or $600 \mathrm{MHz}, \delta, \mathrm{Hz}$) for Compounds $1-4$ in CDCl_{3}

position	$1^{a, b}$	$2^{\text {b }}$	$3^{\text {c }}$	$4^{\text {c }}$
2	7.76 (s)	7.87 (s)	7.76 (s)	7.87 (s)
5		7.85 (s)		7.86 (s)
8	6.59 (s)	6.76 (s)	6.59 (s)	6.76 (s)
2^{\prime}	7.14 (d, 2.0)	7.19 (d, 2.0)	7.11 (d, 1.8)	7.17 (d, 1.0)
5^{\prime}	6.93 (d, 8.0)	6.93 (d, 8.0)	6.90 (d, 7.8)	6.90 (d, 8.0)
6^{\prime}	6.97 (dd, 8.0, 2.0)	7.00 (dd, 8.0, 2.0)	6.97 (dd, 7.8, 1.8)	7.00 (br d, 8.0)
$1^{\prime \prime}$	6.72 (d, 10.0)	6.43 (d, 10.0)	6.72 (d, 10.2)	6.43 (d, 10.0)
$2^{\prime \prime}$	5.71 (d, 10.0)	5.73 (d, 10.0)	5.70 (d, 10.2)	5.72 (d, 10.0)
$4^{\prime \prime}$	1.46 (s)	1.47 (s)	1.45 (s)	1.47 (s)
$5^{\prime \prime}$	1.46 (s)	1.47 (s)	1.45 (s)	1.49 (s)
$1^{\prime \prime \prime}$	4.29 (dd, 9.5, 2.5)	4.30 (dd, 10.0, 2.0)	4.59 (br d, 6.6)	4.60 (br d, 6.6)
	4.08 (dd, 9.5, 6.5)	4.09 (dd, 10.0, 5.5)		
$2^{\prime \prime \prime}$	3.69 (br s)	3.70 (br s)	5.51 (t, 7.0)	5.51 (t, 7.0)
$4^{\prime \prime \prime}$	1.29 (s)	1.30 (s)	1.72(s)	1.72 (s)
$5^{\prime \prime \prime}$	1.24 (s)	1.29 (s)	1.75(s)	1.75(s)
$5-\mathrm{OCH}_{3}$	3.86 (s)		3.87(s)	
$3^{\prime}-\mathrm{OCH}_{3}$	3.87 (s)	3.88 (s)	3.88(s)	3.89 (3H, s)
${ }^{\text {a }}$ Signals were assigned by $\mathrm{HMQC}, \mathrm{HMBC}$, and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiments. ${ }^{b}$ At 500 MHz . ${ }^{\text {a }}$ At 600 MHz .				

Table 2. Zone Unit Differentials in the Disk Diffusion Soft Agar Colony Formation Assay ${ }^{a}$ and IC_{50} Values for Compounds 1-7

	murine tumor selectivity		toxicity to human colon cancer cell line HCT-116
compound	conc $(\mu \mathrm{g} / \mathrm{disk})$	$\mathrm{Z}_{\mathrm{C} 38}-\mathrm{Z}_{\mathrm{L} 1210}$	$\mathrm{IC}_{50}(\mu \mathrm{~g} /$ disk $)$
$\mathbf{1}$	68	300	7.5
$\mathbf{2}$	66	300	18
$\mathbf{3}$	NA^{b}		
$\mathbf{4}$	1.9	600	>46
$\mathbf{5}$	0.23	500	30
$\mathbf{6}$	0.26	450	0.045
7	0.24	550	0.055

${ }^{a}$ Measured in zone units: 200 zone units $=6 \mathrm{~mm}$. Murine cell lines: C38 (colon adenocarcinoma), L1210 (lymphocytic leukemia). ${ }^{b}$ NA = not active.

Plant Material. Leaves and twigs of Antheroporum pierrei were collected in Thailand in August 1987 for the U.S. National Cancer Institute (NCI) program on anticancer drug discovery and were identified by Prof. J. S. Burley. The NCI Open Repository Sample number N001507 was assigned to the sample.

Extraction and Isolation. Dried plant material was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(1: 1)$, residual solvents were removed under vacuum, and the extract (N001507) was stored at $-20^{\circ} \mathrm{C}$ in the NCI repository at the Frederick Cancer Research and Development Center (Frederick, MD). The crude extract (5.0 g sample from an NCI stock supply) was partitioned between hexanes and 80% aqueous MeOH . The bioactive $\mathrm{MeOH}(\mathrm{aq})$ fraction was diluted to $50 \% \mathrm{MeOH}(\mathrm{aq})$ by the addition of water and extracted with CHCl_{3}. Evaporation of the CHCl_{3} fraction yielded a dark green residue (474 mg), which was subjected to sizeexclusion chromatography over Sephadex LH-20 (15.0 g) made up in hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:4) and eluted with 250 mL each of hexanes/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:4), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone (3:2), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone (1:4), and finally $\mathrm{MeOH}(500 \mathrm{~mL})$. The bioactive hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 4)$ fraction (248 mg) was subjected to column chromatography over Lichroprep diol (60 g) made up in hexanes/EtOAc (5:1) and eluted with hexanes/ EtOAc (5:1, 500 mL), hexanes/EtOAc (3:1, 500 mL), hexanes/EtOAc ($1: 1,500 \mathrm{~mL}$), EtOAc (250 mL), EtOAc/MeOH (1:1, 250 mL), and $\mathrm{MeOH}(500 \mathrm{~mL})$. The resulting fractions were combined on the basis of
their TLC profiles to afford 12 fractions ($\mathrm{F} 1-\mathrm{F} 12$). Of these, fraction F10 (78.8 mg), which was found to be active, was subjected to sizeexclusion chromatography on Sephadex LH-20 $(150 \mathrm{~g})$ and eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (3:2) to afford three subfractions ($\mathrm{F} 10 \mathrm{a}-\mathrm{c}$). The subfraction F10a (34.1 mg) was further fractionated on Sephadex LH$20(150 \mathrm{~g})$ and eluted with MeOH to obtain four subfractions, of which only the third fraction was found to be active. Compounds $\mathbf{1}$ (5.3 mg) and $2(2.2 \mathrm{mg})$ were obtained from this active fraction by HPLC on a C-8 semipreparative column. Further fractionation of the active fraction F4 (4.3 mg) by HPLC under the same conditions afforded compounds 3 $(2.3 \mathrm{mg})$ and $4(0.9 \mathrm{mg})$. The active fraction F5 $(29.2 \mathrm{mg})$ on Sephadex LH-20 (150 g) size-exclusion chromatography and elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (3:2) yielded two subfractions, F5a and F5b. Further fractionation of the active subfraction F5b by HPLC as above afforded compounds $5(1.4 \mathrm{mg}), \mathbf{6}(3.0 \mathrm{mg})$, and $7(1.1 \mathrm{mg})$.

Pierreione A (1): white, amorphous solid; $[\alpha]^{25}{ }_{\mathrm{D}}-5.4$ (c 0.1, $\left.\mathrm{CHCl}_{3}\right)$; UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon) 325$ (3.72), 271 (4.48), 228 (4.28), 203 (4.40) nm; IR (KBr) $v_{\text {max }} 3433,2974,2931,1639,1604$, 1515, 1465, 1265, 1207, 1126, 1180, $1064 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR data, see Table 1; ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.9$ (C-4), 158.6 (C-9), 158.1 (C-7), 155.7 (C-5), 150.6 (C-2), 149.3 (C-3'), 147.8 (C-4'), 130.8 (C-2'), 126.1 (C-1'), 125.5 (C-3), 121.3 (C-6'), 116.0 (C-1'), 114.2 (C-5'), 113.3 (C-6), 113.1 (C-10), 113.0 (C-2'), 100.6 (C-8), 77.7
 $\left(3^{\prime}-\mathrm{OCH}_{3}\right), 28.3\left(\mathrm{C}-4^{\prime \prime}\right), 28.3\left(\mathrm{C}-5^{\prime \prime}\right), 26.7\left(\mathrm{C}-4^{\prime \prime \prime}\right), 25.2\left(\mathrm{C}-5^{\prime \prime \prime}\right)$; HRESIMS $m / z 483.2004[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{O}_{8}, 483.2019$).

Pierreione B (2): white, amorphous solid; $[\alpha]^{25}{ }_{\mathrm{D}}-5.8$ (c 0.1 , $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 331$ (3.96), 267 (4.52), 228 (4.45), 206 (4.47) nm; IR (KBr) $v_{\text {max }} 3425,2974,1639,1621,1515$, 1477, 1269, 1203, 1141, $1110 \mathrm{~cm}^{-1}$; ${ }^{1}$ H NMR data, see Table 1; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.6$ (C-4), 158.0 (C-9), 157.4 (C-7), 152.1 (C-2), 149.4 (C-3'), 147.8 (C-4'), 131.7 (C-2'), 126.1 ($\left.\mathrm{C}-1^{\prime}\right)$, 124.5 (C-3), 123.7 (C-5), 121.2 (C-6'), 121.0 (C-1"), 114.2 (C-5'), 119.9 (C-6), 118.5 (C-10), 112.8 (C-2'), 103.9 (C-8), 77.9 (C-3"), 74.9 (C-2'I'), 71.9 (C-1 $\left.1^{\prime \prime \prime}\right), 71.9\left(\mathrm{C}-3^{\prime \prime \prime}\right), 55.8\left(3^{\prime}-\mathrm{OCH}_{3}\right), 28.5\left(\mathrm{C}-4^{\prime \prime}\right), 28.5$ (C-5'), 26.7 (C-4"'), 25.2 (C-5"'); HRESIMS $m / z 453.1872$ [M + $\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{O}_{7}, 453.1913$).
Pierreione C (3): white, amorphous powder; UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log$ ع) 325 (3.84), 272 (4.60), 228 (4.42), 206 (4.54) nm; IR (KBr) $\nu_{\text {max }}$ 3433, 2927, 1639, 1640, 1512, 1461, 1265, 1207, $1126 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) data, see Table 1; HRESIMS $m / z 449.1968$ [$\mathrm{M}+$ $\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{6}$, 449.1964).
Pierreione D (4): white, amorphous powder; UV (MeOH) $\lambda_{\text {max }}(\log$ ع) 331 (3.93), 267 (4.49), 228 (4.43), 204 (4.48) nm; IR (KBr) $\nu_{\text {max }}$ $3461,2931,1647,1612,1517,1473 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) data, see Table 1; HRESIMS $m / z 419.1853[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}_{5}, 419.1859$).
Rotenone (5): white solid; $[\alpha]^{25}{ }_{\mathrm{D}}-173.3$ ($c 0.03, \mathrm{CHCl}_{3}$); LRAPCIMS and ${ }^{1} \mathrm{H}$ NMR data were consistent with literature values. ${ }^{6}$

12a-Hydroxyrotenone (6): white solid; $[\alpha]^{25}{ }_{\mathrm{D}}-90.7$ (c 0.07, CHCl_{3}); LR-APCIMS, ${ }^{1} \mathrm{H}$ NMR, and ${ }^{13} \mathrm{C}$ NMR data were consistent with those reported. ${ }^{6,7}$

Tephrosin (7): white solid; $[\alpha]^{25}{ }_{\mathrm{D}}-100.0$ (c 0.09, CHCl_{3}); LRAPCIMS and ${ }^{1}$ H NMR data were consistent with literature values. ${ }^{8}$

Preparation of the (R)- and (S)-MTPA Ester Derivatives (8a and 8b) of 1 by a Convenient Mosher Ester Procedure. ${ }^{18,19}$. Compound $\mathbf{1}(1.0 \mathrm{mg})$ was transferred into a clean NMR tube and was dried under vacuum. Pyridine- $d_{5}(0.5 \mathrm{~mL})$ and $(S)-(-)-\alpha$-methoxy-α-(trifluoromethyl)phenylacetyl (MTPA) chloride ($5 \mu \mathrm{~L}$) were added to the NMR tube immediately under a stream of N_{2}, and the tube was shaken carefully to mix the sample and the MTPA chloride. The NMR tube was allowed to stand at room temperature for 2 h to afford the (S) MTPA ester derivative ($\mathbf{8 a}$) of $\mathbf{1} .{ }^{1} \mathrm{H}$ NMR data of $\mathbf{8 a}(600 \mathrm{MHz}$, pyridine $-d_{5}$): $\delta 8.08(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.50\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-2^{\prime}\right), 7.27(1 \mathrm{H}, \mathrm{d}, J=$ $\left.8.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.83\left(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right), 6.03(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}$, $\left.\mathrm{H}-2^{\prime \prime \prime}\right), 5.76\left(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 4.89\left(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime \prime} \mathrm{a}\right)$, $4.56\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.4,9.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime \prime} \mathrm{b}\right), 4.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}, \mathrm{OCH}_{3}-5\right.$ or $\left.\mathrm{OCH}_{3}-3^{\prime}\right), 3.80(3 \mathrm{H}, \mathrm{s}), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}-5\right.$ or $\left.\mathrm{OCH}_{3}-3^{\prime}\right), 1.43(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-4^{\prime \prime \prime}$ or $\left.\mathrm{H}-5^{\prime \prime \prime}\right), 1.42\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}-4^{\prime \prime}\right.$ and $\left.5^{\prime \prime}\right), 1.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-4^{\prime \prime \prime}\right.$ or $\left.\mathrm{H}-\mathrm{s}^{\prime \prime \prime}\right)$. In the manner described for 8a, another portion of $\mathbf{1}(0.9 \mathrm{mg})$ was reacted in a second NMR tube with $(R)-(+)-\alpha$-methoxy-α-(trifluoromethyl)phenylacetyl chloride $(5 \mu \mathrm{~L})$ at room temperature for 2 h in pyridine- $d_{5}(0.5 \mathrm{~mL})$ to afford the (R)-MTPA ester derivative (8b). ${ }^{1} \mathrm{H}$ NMR data of $8 \mathbf{b}\left(600 \mathrm{MHz}\right.$, pyridine $\left.-d_{5}\right): \delta 8.07(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2)$, $7.50\left(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 7.25\left(1 \mathrm{H}, \mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.12$ $\left(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.83\left(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{l}^{\prime \prime}\right), 6.77(1 \mathrm{H}, \mathrm{s}$, H-8), $6.07\left(1 \mathrm{H}, \mathrm{dd}, J=9.0,1.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime \prime}\right), 5.77(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}$, $\left.\mathrm{H}-2^{\prime \prime}\right), 4.76\left(1 \mathrm{H}, \mathrm{dd}, J=10.8,1.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime \prime} \mathrm{a}\right), 4.42(1 \mathrm{H}, \mathrm{dd}, J=10.8,9.0$ $\left.\mathrm{Hz}, \mathrm{H}-1^{\prime \prime \prime} \mathrm{b}\right), 4.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}-5\right.$ or $\left.\mathrm{OCH}_{3}-3^{\prime}\right), 3.79(3 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}$, s), $1.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-4^{\prime \prime \prime}\right.$ or $\left.\mathrm{H}-5^{\prime \prime \prime}\right), 1.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-4^{\prime \prime \prime}\right.$ or $\left.\mathrm{H}-5^{\prime \prime \prime}\right), 1.43(6 \mathrm{H}$, s, $\mathrm{H}-4^{\prime \prime}$ and $\mathrm{H}-\mathrm{D}^{\prime \prime}$).

In Vitro Disk Diffusion Assay for Cytotoxicity. The disk diffusion assay was used to define differential cell killing among human and murine normal and malignant cell types as previously reported. ${ }^{2}$ Since the initial extract (N001507) obtained from NCI was found to demonstrate selectivity between murine colon 38 and leukemia L1210 cells, these cell lines were used for bioassay-guided fractionation and
evaluation of the active compounds. Both the magnitude of the zonal difference and the potency was used for prioritization of fractions.
IC_{50} Determinations. IC_{50} studies were carried out against human HCT-116 colon cancer cells. These cells were grown in 5 mL of culture medium (RPMI-1640 $+15 \%$ FBS containing 1% penicillin-streptomycin and 1% glutamine) at $37{ }^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ at a starting concentration of 5×10^{4} cells/T25 flask. On day 3 , cells were exposed to different concentrations of the drug. Flasks were incubated for 120 h (5 d) in a $5 \% \mathrm{CO}_{2}$ incubator at $37^{\circ} \mathrm{C}$, and the cells were harvested with trypsin, washed once with HBSS, resuspended in HBSS, and then counted using a hemocytometer. The results are normalized to an untreated control. The IC_{50} values were determined using Prism 4.0 software.

■ ASSOCIATED CONTENT

(s) Supporting Information. ${ }^{1} \mathrm{H}$ NMR spectra for compounds $\mathbf{1 - 7}, \mathbf{8}$, and $\mathbf{8 b} ;{ }^{13} \mathrm{C}$ NMR spectra for compounds $\mathbf{1 - 3}$ and $\mathbf{6} ;{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HSQC, and HMBC spectra for compound 1; key HMBC and NOE correlations for 1 (Figure S17); $\Delta \delta$ values obtained for (S)- and (R)-MTPA esters ($8 \mathbf{a}$ and $\mathbf{8 b}$, respectively) of $\mathbf{1}$ (Figure S18). This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*Tel: (520) 621-9932. Fax: (520) 621-8378. E-mail (A.A.L.G.): leslieg@cals.arizona.edu. E-mail (F.A.V.): fvaleri1@hfhs.org.

- ACKNOWLEDGMENT

Financial support for this work was provided by Grant R01 CA092143 funded by the National Cancer Institute (NCI). We thank Dr. D. Newman of the NCI for providing the crude extract and Dr. X.-N. Wang for reading the manuscript and suggesting some modifications.

■ REFERENCES

(1) (a) Monga, M.; Sausville, E. A. Leukemia 2002, 16, 520-526. (b) Jones, D. Nat. Rev. Drug Discovery 2008, 7, 875-877.
(2) Valeriote, F.; Grieshaber, C. K.; Media, J.; Pietraszkewicz, H.; Hoffmann, J.; Pan, M.; McLaughlin, S. J. Exp. Ther. Oncol. 2002, 2, 228-236.
(3) Subramanian, B.; Nakeff, A.; Tenney, K.; Crews, P.; Gunatilaka, L.; Valeriote, F. J. Exp. Ther. Oncol. 2006, 5, 195-204.
(4) International Plant Names Index, 2011, at http://www.ipni.org.
(5) Evans, S. V.; Fellows, L. E.; Bell, E. A. Biochem. Syst. Ecol. 1985, 13, 271-302.
(6) Dagne, E.; Yenesew, A.; Waterman, P. G. Phytochemistry 1989, 28, 3207-3210.
(7) Puyvelde, L. V.; De Kimpe, N.; Mudaheranwa, J.-P.; Gasiga, A.; Schamp, N.; Declercq, J.-P.; Meerssche, M. V. J. Nat. Prod. 1987, 50, 349-356.
(8) Andrei, C.; Vieira, P. C.; Fernandes, J. B.; Silva, M. F. G. F.; Fo, E. R. Phytochemistry 1997, 46, 1081-1085.
(9) Veitch, N. C.; Sutton, P. S. E.; Kite, G. C.; Ireland, H. E. J. Nat. Prod. 2003, 66, 210-216.
(10) Nkengfack, A. E.; Azebaze, A. G. B.; Waffo, A. K.; Fomum, Z. T.; Meyer, M.; Heerden, F. R. Phytochemisty 2001, 58, 1113-1120.
(11) Murthy, M. S.; Rao, E. V. Magn. Reson. Chem. 1986, 24, 225-230.
(12) Khalid, S.; Waterman, P. G. Phytochemisty 1983, 22, 10011003.
(13) Mahabusarakam, W.; Deachathai, S.; Phongpaichit, S.; Jansakul, C.; Taylor, W. C. Phytochemisty 2004, 65, 1185-1191.
(14) Yin, S.; Fan, C. Q.; Wang, Y.; Dong, L.; Yue, J. M. Bioorg. Med. Chem. 2004, 12, 4387-4392.
(15) He, H. P.; Shen, Y. M.; Chen, S. T.; He, Y. N.; Hao, X. J. Helv. Chim. Acta 2006, 89, 2836-2840.
(16) Debenedetti, S. L.; Palacios, P. S.; Nadinic, E. L.; Coussio, J. D. J. Nat. Prod. 1994, 57, 1539-1542.
(17) Bashyal, B. P.; Wijeratne, E. M. K.; Faeth., S. H.; Gunatilaka, A. A. L. J. Nat. Prod. 2005, 68, 724-728.
(18) Su, B. N.; Park, E. J.; Mbwambo, Z. H.; Santarsiero, B. D.; Mesecar, A. D.; Fong, H. H. S.; Pezzuto, J. M.; Kinghorn, A. D. J. Nat. Prod. 2002, 65, 1278-1282.
(19) Asomaning, W. A.; Amoako, C.; Oppong, I. V.; Phillips, W. R.; Addae-Mensah, I.; Osei-twum, E. Y.; Waibel, R.; Achenbach, H. Phytochemisty 1995, 39, 1215-1218.
(20) Minhaj, N.; Khan, H.; Kapoor, S. K.; Zaman, A. Tetrahedron 1976, 32, 749-751.
(21) Blaskó, G.; Shieh, H. L.; Pezzuto, J. M.; Cordell, G. A. J. Nat. Prod. 1989, 52, 1363-1366.
(22) Deng, Y.-T.; Huang, H.-C.; Lin, J.-K. Mol. Carcinog. 2010, 49, 141-151.
(23) Matsuda, H.; Yoshida, K.; Miyagawa, K.; Asao, Y.; Takayama, S.; Nakashima, S.; Xu, F.; Yoshikawa, M. Bioorg. Med. Chem. 2007, 15, 1539-1546.
(24) Cao, S.; Schilling, J. K.; Miller, J. S.; Andriantsiferana, R.; Rasamison, V. E.; Kingston, D. G. I. J. Nat. Prod. 2004, 67, 454-456.
(25) Fang, N.; Casida, J.E. J. Agric. Food Chem. 1999, 47, 2130-2136.

[^0]: Received: October 20, 2010
 Published: March 31, 2011

